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Cellular Pressure and Volume Regulation and Implications for Cell
Mechanics
Hongyuan Jiang† and Sean X. Sun†‡*
†Department of Mechanical Engineering and ‡Department of Biomedical Engineering and Johns Hopkins Physical Oncology Center, Johns
Hopkins University, Baltimore, Maryland
ABSTRACT In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death, and
migration. Volume and shape regulation also directly impacts the mechanics of cells and tissues. Here, we develop a mathemat-
ical model of cellular volume and pressure regulation, incorporating essential elements such as water permeation, mechanosen-
sitive channels, active ion pumps, and active stresses in the cortex. The model can fully explain recent experimental data, and it
predicts cellular volume and pressure for several models of cell cortical mechanics. Moreover, we show that when cells are sub-
jected to an externally applied load, such as in an atomic force microscopy indentation experiment, active regulation of volume
and pressure leads to a complex cellular response. Instead of the passive mechanics of the cortex, the observed cell stiffness
depends on several factors working together. This provides a mathematical explanation of rate-dependent response of cells un-
der force.
INTRODUCTION
Unlike plant and bacterial cells, animal cells lack a stiff cell
wall that resists large changes in cell volume. Instead, the
interplay of membrane tension, active contractility, water,
and ion flows control the cell shape and volume (1).
Conversely, when external forces are applied to the cell,
the observed shape and pressure responses are also the com-
bined results of these influences. A quantitative understand-
ing of this important system is still lacking. Most
mathematical models of cell-shape dynamics treat the cell
as a constant volume of cytoplasm surrounded by a layer
of membrane or cortex (see more detailed review in Clark
and Paluch (2) and Sabreux et al. (3)). Such models have
been successfully used to quantitatively describe problems
such as red blood cell mechanics (4) and shape instability
of dividing cells (5). However, the transport of water and
ions and the subsequent cell-volume change controlled by
passive or active ion channels are generally neglected in
these models. In studies of cell mechanics with mechanical
perturbation measurements (6–9), cells are usually modeled
as an elastic or viscoelastic body, without consideration of
the possible volume change induced by external forces.
Lately, however, cell-volume dynamics is being recognized
as an important element in cell mechanics. A recent exper-
iment (10) showed that cell rheological properties can
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change due to the effects of the interstitial fluid and related
volume change. Another recent experiment (11) measured
volume and pressure changes in metaphase cells after intro-
ducing osmotic shocks. The quantitative results of that
experiment showed that the cell volume during metaphase
can adapt to large external osmotic shocks, and that the
adaptation timescale is over tens of minutes. There are large
numbers of studies on ion channels in cell osmotic regula-
tion, and cell mechanics. However, there seem to be a
limited number of studies so far linking these two funda-
mental aspects. Here we develop a mathematical model of
cell volume and pressure response, combining the influence
of cortical tension, water permeation, and ion dynamics.
The model is able to compute cell-shape changes during os-
motic shock and predict the response of the cell to externally
applied mechanical forces. We show that the mechanical
response of cells during slow deformations (~mm/min) is
dominated by water permeation. Cytoskeletal mechanics
is only one of several variables that strongly influence the
apparent cellular mechanical response.

Cytoplasmic fluid flow has been examined as an impor-
tant element that controls the overall mechanics of eukary-
otic animal cells (12), and a recent experiment showed that
the cytoplasm of living cells behaves as a poroelastic mate-
rial (10) where fluid pressure gradients equilibrate on the
scale of tens of seconds. A closely related phenomenon is
cellular blebs, where local build up of hydrostatic pressure
leads to detachment of the membrane from the actomyosin
cortex underneath the membrane (13). The developed bleb
bulges out from the cell, and in some cases, the cortex can
reform. Blebbing has been observed during cytokinesis (5)
and has been implicated in amoeba cell motility (13). Less
attention has been paid to how cytoplasmic fluid might
flow across the cell membrane. Indeed, the cell membrane
is permeable to a variety of ions, small solutes, and water.
http://dx.doi.org/10.1016/j.bpj.2013.06.021
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FIGURE 1 (a) A minimal model of cell volume and pressure regulation.

We consider a spherical cell enclosed by an actomyosin cortex and the cell

membrane. Embedded in the membrane are several families of passive MS

ion channels and active ion pumps. The MS channels and active ion pumps

can change the internal ion concentration, cin, and the intneral osmotic pres-

sure,Pin, leading to changes in water flux across the membrane. Net flow of

water leads to cell volume changes. (b) Opening probability versus cortical

stress for an MS channel. The red curve shows the simplified piecewise

linear function used in Eq. 2. (c) The flux of ions transported by ion trans-

porters as a function of osmotic pressure difference, DP. This flux is

modeled by Eq. 3. (d) The steady-state phase diagram of the cell as a func-

tion of model parameters DPc and sc. The model predicts two regimes. In

the static regime, there are no ion fluxes at steady-state cell size. All of the

channels and pumps are inactive. In the pump-and-leak regime, the influx

and efflux of ions balance, and the cell maintains a steady-state size.
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Therefore, both hydrostatic and osmotic pressures control
fluid flow across the membrane. Since water is essentially
incompressible, the flow of fluid is directly related to cell
volume change. This phenomenon is typically seen when
cells are subjected to large osmotic shocks. Equally impor-
tant, ion and osmolyte flow across membrane channels and
pumps can also change osmotic pressure. Flows of small
molecules and ions across the membrane are principally
controlled by two types of membrane proteins. Mechano-
sensitive channels are passive membrane proteins that can
open in response to changes in membrane tension. Subse-
quent ion flows across the channel are driven by concentra-
tion differences. In contrast, active ion pumps are energy-
consuming membrane proteins that pump solutes and ions
against concentration gradients. Finally, the actomyosin cor-
tex underneath the membrane and the active stress generated
by molecular motors can also influence membrane tension
and cellular hydrostatic pressure, indirectly influence solute
and ion flow, and thus influence the cell volume. The mem-
brane tension will also influence the opening and closing of
mechanosensitive channels. One experiment (11) revealed
that when the cortex is disrupted with blebbistatin to inhibit
myosin II contraction and latrunculin A to depolymerize
actin filaments, the volume of mitotic cells slightly in-
creases. Therefore, all of these elements must be considered
together to understand cell shape and pressure changes.

Understanding the combined effects of water, ions, cyto-
skeletal mechanics, and contractility is important for under-
standing the overall mechanical response of cells, tissues,
and developmental mechanics in general. There are now
experiments utilizing atomic force microscopy (AFM) or
microrheology to measure the mechanical response of the
cell (6–9). When forces are applied to the cell, hydrostatic
pressure and cortical tension can change, leading to changes
in water and ion flow. We use our model to compute the
shape and force response of the cell during a constant-veloc-
ity indentation. The results reveal the underlying molecular
mechanism that controls the rate-dependent viscoelastic
response of the cell. More generally, it has been proposed
that by placing the membrane channels and pumps nonuni-
formly, the cell can introduce influx and efflux of water at
different locations (14,15). This mechanism may be crucial
for cell motility in neutrophils, and may be important in
cell-shape changes in general.
A MINIMAL MODEL OF CELLULAR VOLUME AND
PRESSURE REGULATION

Let us consider a minimal model of volume and pressure
regulation for a spherical cell, e.g., a mitotic cell or a cell
in suspension. The cellular cytoplasm is enclosed by a
cortical layer, which is a network of actin filaments and con-
tractile myosin motors (Fig. 1 a). Enclosing and adhering to
the cortex is one layer of cell membrane, in which passive
mechanosensitive (MS) ion channels and active ion trans-
Biophysical Journal 105(3) 609–619
porters are embedded. The mechanical tension in the mem-
brane is a complex issue. The overall membrane tension is
controlled by the hydrostatic pressure difference across
the membrane, membrane-cytoskeleton adhesion, and
active stresses in the cell cortex. However, the tension is
also known to be related to the total membrane area, and
therefore is also regulated by membrane superstructures
(e.g., membrane folds and blebs) and membrane trafficking
(e.g., exocytosis and endocytosis) (16). In particular, when
the hydrostatic pressure in the cell becomes large, the mem-
brane may detach from the cortex, leading to the formation
of cellular blebs (17). Therefore, the cortical tension is not
necessarily equivalent to the membrane tension. Here, to
simplify the problem, we neglect the membrane superstruc-
tures and membrane trafficking, and treat the cell membrane
and cortex as a single mechanical structure.
Kinetics of water

Let Pin and Pin be the hydrostatic pressure and the osmotic
pressure, respectively, inside the spherical cell. The corre-
sponding values in the extracellular environment are Pout

andPout (Fig. 1 a). Osmotic pressure can be estimated using
the Van’t Hoff equationP ¼ cRT, where c is the molar con-
centration of solutes, R is the gas constant, and T is absolute
temperature. For an enclosed volume, this can be written as
PV ¼ nRT, where V is the net volume and n is the total
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number of solutes. For high solute concentrations and
crowded cellular environments, the osmotic pressure is
similar, except that one should include an activity co-
efficient that measures the deviation away from the ideal
solution approximation above. The chemical potential of
water on both sides is given by Jin ¼ Pin �Pin and
Jout ¼ Pout �Pout. Therefore, the flux of water can be
modeled as Jwater ¼ �aDJ (18), where a is a rate constant,
DJ ¼ ðDP� DPÞ is the chemical potential difference, and
DP ¼ Pin � Pout and DP ¼ Pin �Pout are the hydrostatic
and osmotic pressure differences across the membrane.
The volume change of a spherical cell with radius r is
then d=dtðð4=3Þpr3Þ ¼ 4pr2Jwater , which gives

dr

dt
¼ Jwater ¼ �aðDP� DPÞ: (1)

In some cells, membrane water permeability can be

enhanced by aquaporins, also known as water channels
(19). This additional mechanism for water transport simply
increases the constant a in our model. Thus, the perme-
ability constant a is related to both the basal permeability
of the cell membrane and water flux through specialized wa-
ter channels.
Kinetics of ions and small molecules

In a vesicle enclosed by a semipermeable membrane, the
flux of solutes is zero and the flux of water is sufficient to
describe the volume change. In living cells, there are
many mechanosensitive (MS) channels (20) and active ion
and small-molecule transporters (or pumps) (21,22) in the
cell membrane, which enable the cell to actively control
the influx and efflux of ions and other osmolytes. Therefore,
the kinetics of the solute must be included to study the vol-
ume and pressure regulation of living cells. To reduce
complexity, we include only one species of MS channel
and one species of ion transporter in our model.

MS channels are membrane proteins that can open a pore
in response to mechanical stimuli (20). They act as emer-
gency valves to release solutes in response to hypotonic
shocks. These channels can vary in permittivity from nonse-
lective to highly selective (20). The opening probability,
Popen, of MS channels follows a Boltzmann function (23)
(Fig. 1 b). If there are NMS channels on the cell membrane,
and there are NPopen open channels for a given stress. There-
fore, the ion flux across MS channels is proportional to
NPopenDc=h0, where Dc=h0 represents the concentration
gradient of ions, and h0 is the membrane thickness. By
approximating the Boltzmann function by a piecewise linear
function (Fig. 1 b, red curve), the ion flux due to the opening
of MS channels can be modeled as

J1 ¼
8<
:

0 if s%sc

�bðs� scÞDP if sc<s<ss

�bðss � scÞDP if sRss

; (2)
where b is a rate constant. sc is the threshold stress, below
which J1 is zero. ss is the saturating stress, above which
all MS channels are open. Here, Dc is replaced by DP
since DP ¼ RTDc. The coefficients RT and h0 can be ab-
sorbed by b.

MS channels release ions passively in the direction of
the concentration gradient, whereas ion transporters (or
ion pumps), the other type of transmembrane protein, are
used by cells to actively import ions across a plasma
membrane against a concentration or electrochemical
gradient (21,22). Ion transporters require the input of
energy, such as from ATP hydrolysis, energy-releasing
enzymatic reactions, or sunlight, to overcome the energy
barrier from an ion concentration or electrochemical
gradient. For simplicity, here we consider only a con-
centration gradient. The free-energy change during the
pumping action is DG ¼ RT logðcin=coutÞ � DGa, where
cin and cout are the ion concentrations inside and outside
the cell, respectively. In most cases, cin>cout and the first
term of DG is positive. Therefore, the process is unfavor-
able and must require energy input DGa, which typically
can come from energy sources such as ATP. It should be
noted that since we only have one species of ion in this
model, we neglect the charge of ions and the requirement
of electroneutrality. In general, however, it is also possible
to generalize to multiple ionic species and examine possible
changes in the cell voltage with volume by adding an
electrical potential term in the free-energy change
described above (24). The ion flux across transporters can
be modeled as J2 ¼ �g0DG, where g0 is a permeation
constant. By assuming cin � cout � cin, we can perform
a Taylor expansion and DG can be linearized
as DG ¼ RTðcin � coutÞ=cout � DGa ¼ RTðPin �PoutÞ=
Pout � DGa. Thus, the flux by active pumping of ion trans-
porters can be written as (Fig. 1 c)

J2 ¼ gðDPc � DPÞ; (3)
where g is a constant. DPc ¼ PoutDGa=RT is a critical os-

motic pressure difference, which is given by DG ¼ 0. The
free energy from ATP during typical cellular conditions is
~30 kJ/mol, and the osmotic pressure of the medium is
Pout ¼ 0:5 MPa (17), which yields DPcz 6 �104Poutz
3 �104MPa. It should be noted that the active transport is
a complex process that involves multistep enzymatic reac-
tions (25). The expression and activity of ion transporters
are influenced by other regulators and ATP/ADP concentra-
tions (25). There are also multiple species of transporters,
and the actual values of DPc would vary depending on
the energy source and the molecular mechanism.

Notice that in our article, efflux is negative and influx is
positive (Eqs. 2 and 3). Given J1 and J2, the total number
of ions in a spherical cell is determined by
Biophysical Journal 105(3) 609–619
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dn

dt
¼ 4pr2ðJ1 þ J2Þ: (4)

Force balance and the mechanics of the cell
cortex

We consider the situation where the hydrostatic pressure
inside the cell is sufficiently low that the cell membrane is
attached to the cell cortex, and there is no blebbing (17).
Furthermore, we neglect the dynamics of membrane super-
structures and membrane trafficking (16). Therefore, the
cortex and membrane can be treated as a single layer. For
a spherical cell, from mechanical force balance, the overall
cortical stress is given by s ¼ DPr=2h, where h is the
cortical thickness. The mechanics of the cell cortex is inter-
esting and complex. Models such as the active gel model
(26,27) have been developed to describe the cortical me-
chanics. Elastic cortex models have also been used under
certain situations (2,5,17,28). In general, the constitutive
law of the cortex can be written as s ¼ sp � sa, where sa
is the active stress from the contraction of myosin motors,
and sp is the passive stress from deformation of the actin
network (26,27). Note that because myosin applies a con-
tractile force on the actin filament network, sa is negative.

In this article, based on elastic cortex models (2,5,17,28),
we first focus on a more general viscoelastic model.
In this case, the passive stress can be written as sp ¼ K=2
ðS=S0 � 1Þ þ hð1=SÞðdS=dtÞ, where K is the elastic
modulus and h is the viscosity of the cortex. S and S0 are
the deformed and reference surface areas, respectively.
The constitutive law is then

s ¼ K

2

�
S

S0
� 1

�
þ h

1

S

dS

dt
� sa (5)

For a spherical cell, this is reduced to s ¼ K=2
ðr2=r20 � 1Þ þ hð2=rÞðdr=dtÞ � sa, where r and r0 are
the cell radii in the deformed and reference states, respec-
tively. In a typical experiment (11), the cell radius changes
� 10% in several minutes, and the apparent viscosity of the
cortex is given by hz102 � 103Pa$s (4,29). Thus,
hð2=rÞðdr=dtÞz10�1 � 100Pa, which is much smaller
than the other terms in Eq. 5. Therefore, in this problem,
the contribution of the viscous term hð2=rÞðdr=dtÞ is negli-
gible. In this case, our viscoelastic model is reducible to an
elastic cortex model (2,17,28).
RESULTS

Cells pump and leak

Using Eq. 5 and solving the coupled equations above (Eqs.
1–4), we find that the model yields a steady cell radius.
However, there exist two different regimes (Fig. 1 d). In
Biophysical Journal 105(3) 609–619
one regime, DPc is so small that the energy provided by
DGa can only overcome a small concentration gradient.
However, the ion concentration difference does not generate
enough hydrostatic pressure to activate MS channels. There-
fore, at steady state, the flux through both MS channels and
ion transporters is zero (Fig. S2) and the cell is static. In
contrast, if DPc is sufficiently large, MS channels will be
activated before the influx through ion transporters de-
creases to zero. So there should be a dynamic equilibrium
(Fig. S1) where influx and efflux balance and the net ion
flux is zero. This regime is consistent with the so-called
pump-leak concept: there is an active influx of ions balanced
by a passive leak of these ions in the opposite direction
(1,25). For the constitutive law in Eq. 5, cells pump and
leak when

DPc>
2hsc

ffiffiffiffi
K

p

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 2ðsc þ saÞ

p : (6)

For the parameter range of the living cells summarized in
Table 1, we find that the above condition becomes DPc>
90 Pa. For ATP-driven pumps, DPcz 3 �104MPa, as dis-
cussed above. This implies that Eq. 6 is always satisfied
for a typical cell in metaphase. Therefore, cells in Stewart
et al. (11) are in the pump-and-leak regime. It should be
noted that the static regime is an idealization. If we use
the Boltzmann distribution proposed in Sukharev et al.
(23), there should be three regimes: the saturated efflux
regime, the quasistatic regime, and the intermediate regime.
In the quasistatic regime, the efflux of ions is much smaller
than that in the other regimes but is not zero. In this case, the
boundary between the two regimes is no longer the sharp
interface depicted in Fig. 1 d.
Cells can adapt to osmotic shocks

After applying a hypotonic shock to a cell that is initially in
dynamic equilibrium (Fig. 2 a), the decrease of medium os-
motic pressure drives the influx of water. The influx of water
leads to an increase of both the cell radius (volume) and hy-
drostatic pressure difference. The influx of water also leads
to an increase of cortical stress, which in turn opens more
MS channels and increases the efflux of ions. Therefore,
the net ion flux becomes negative (efflux), so that the total
number of ions, n, decreases. As n decreases, the cortical
stress and the efflux of ions decrease. When DP<DP, water
flows out of the cell again. The hydrostatic pressure differ-
ence and cell radius (volume) decrease and finally return
to their original value (Fig. 2, d and e). The net change is
a decrease in the total number of ions, n (Fig. 2 g), and
the osmotic pressure inside the cell, Pin (Fig. 2 b).
Conversely, when hypertonic shock is introduced (Fig. 2
a), water flows out, so that the cell volume and the hydro-
static pressure decrease, and the cortical stress decreases.
An increasing number of MS channels are closed. If the



TABLE 1 Summary of parameters used in the calculations

Parameter Description Value from experiments Value in simulation

h Thickness of cortical layer (mm) 0:1 � 0:6 (17,41) 0.5

K Elastic constant of the cortical layer (KPa) 10�1 � 102 (42) 6

sa Active stress inside the cortex (Pa) �100 �100

sc Threshold stress of MS channel (Pa) - 300a

ss Saturating stress of MS channel (Pa) - 900a

DPc Critical osmotic pressure difference of ion pump (GPa) - 30b

r0 Cell radius in the reference state (mm) 8.5 (17) 8

Pout Osmotic pressure outside the cell (MPa) 0.5 (17) 0.5

a Rate constant of water transport (m$s�1 Pa�1) 10�9c 10�9

g Rate constant of ion flux across ion transporters

(mol$m�2 s�1 Pa�1)

10�16 � 10�17 (43,44)d 10�17

b Rate constant of ion flux across MS channels

(mol$m�2 s�1 Pa�2)

10�11 � 10�10e 2� 10�11

aThe mechanosensitive channel of large conductance (MscL) follows a Boltzmann distribution with midpoint tension (50% of the channel being open) at 12

dyn cm�1 (23). The threshold tension of MscL, which is defined as the pressure at which openings are readily observed every 0.5–2 s in experiments, is much

lower. The MS channel of small conductance (MscS) has an even lower threshold tension. MscL and MscS are MS channels in prokaryotic cells. In eukary-

otic cells, the threshold tension is much lower (20). Our model is mainly used to describe the volume regulation of eukaryotic cells. Therefore, we estimate a

small threshold stress for MS channels here. The saturating stress of the MS channel is assumed to be three times its threshold stress.
bSee our estimate in the main text.
cAcross various eukaryotic cells, the permeability rate, Pf , is usually reported in the range 10

�5 � 10�4 m/s (45). The definition of the water permeability rate

relates the flux created by a concentration, J ¼ Pf VwDc ¼ ðPf Vw=RTÞDP, where Vw is the molar volume of water, Dc is the difference of concentration

across the membrane, and DP is the osmotic pressure difference across the membrane. From this relation, we can get a ¼ Pf Vw=RT. Therefore,
a ¼ 10�13 � 10�12 m$s�1 Pa�1. We found that if we use a ¼ 10�12 m$s�1 Pa�1, the adaptation time is ~100 min, which is longer than the experimentally

observed adaptation time (several minutes). We found water channels can be used to reconcile this discrepancy. Water channels, also known as aquaporins,

are found to significantly increase the water permeability in many cells (19). The water permeability of these types of cells is much larger than the perme-

ability by simple diffusion through the plasma membrane. In fact, the experimentally measured water permeability (45,46) is the diffusional water perme-

ability or basal permeability, i.e., the permeability in the absence of any specific transport pathway. In other words, the contribution of water channels has

been excluded in these experiments. The existence of water channels will increase the rate of water transport and the constant a in our model. In the simu-

lation, we found that the adaptation time is not very sensitive to a, since the adaptation time changes by one order of magnitude (from several minutes

to ~100 minutes) as a changes by three orders of magnitude (from 10�9 m$s�1 Pa�1 to 10�12 m$s�1 Pa�1). We also found that the simulation is quite consis-

tent with the experimental results when a ¼ 10�9 m$s�1 Pa�1. Therefore, a can be regarded as a fitting parameter in this work.
dThe flux of the sodium ion on active transport of Naþ is ~10�7 � 10�6 mol$m�2 s�1 (43,44). This number is quite close to our calculated ion flux across

pumps, which has a maximum at ~10�7 mol$m�2 s�1. Divided by DPc, the rate constant g in our model is ~10�16 � 10�17 mol$m�2 s�1.
eThe ion flux due to the opening of MS channels has an amplitude similar to that of the ion flux across ion pumps, i.e., 10�7 � 10�6 mol$m�2 s�1 (43,44) for

Naþ. Normalized by sc and DP, the rate constant b in our model is estimated as 10�11 � 10�10 mol$m�2 s�1 Pa�1.
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hypertonic shock is sufficiently large that s<sc (Fig. 2 f),
then all the MS channels are closed ðJout ¼ 0Þ (Fig. 2 j).
Therefore, the net ion flux becomes positive (influx), so
that the total number of ions, n, increases. As n increases,
the cortical stress and efflux of ions increase. When
DP>DP, water enters the cell again. After that, the cell
can gradually recover to the original hydrostatic pressure
difference and cell radius (Fig. 2, d and e). Notice that the
time courses of adaptation to hypotonic and hypertonic
shock are different. This is because when all MS channels
are closed, the speed of the recovery is limited. This could
be one of the reasons that the time needed to recover from
hypertonic shock is longer (11); more sophisticated experi-
ments are required to test this prediction.

In Fig. 2, we assume that DPc is a constant, DPc ¼ 6
�1010 Pa. Cells can exactly recover their original volume.
In general, however, DPc should depend on Pout, as dis-
cussed earlier. If we adopt this assumption and use DPc ¼
3 �104Pout, imperfect adaptation to osmotic shocks occurs
(Fig. 3). The steady-state values of r and DP become slightly
smaller after the hypotonic shock, whereas they become
slightly larger after the hypertonic shock.
Cells can actively adjust the adaptation level

In our model, the steady-state size of the cell is determined
by a combination of parameters. Cells can potentially con-
trol these parameters to achieve different sizes. In the exper-
iment (11), when ion pumps, e.g., Naþ/Hþ antiporters, are
blocked by ethylisopropylamiloride (EIPA), both cell vol-
ume and pressure decrease. In our model, we use a decrease
in DPc, i.e., there is a lowering of ion pump performance, to
describe the inhibition of Naþ/Hþ antiporters by EIPA
(Fig. S3). In the experiment (11), rendering the membrane
more permeable to ions by pore-forming a-toxin or HlyA
also leads to a decrease of the cell volume and pressure.
We can simulate this result by decreasing the threshold
stress of MS channels, sc (Fig. S4). Finally, in the experi-
ment (11), the actin cortex can be disrupted with blebbista-
tin to inhibit myosin II contraction and latrunculin A to
depolymerize actin filaments. We can model this by
lowering the cortical thickness, the elastic modulus of the
cortex, and the active stress (see Figs. S5 and S6). In these
cases, the volume increases. This change of volume is not
the direct result of changing cortical mechanics and tension,
Biophysical Journal 105(3) 609–619
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FIGURE 2 Mitotic cells adapt to osmotic shocks. In this figure, we model the experiments of Stewart et al. (11), where metaphase cells are subjected to

osmotic shocks. (a) A hypotonic shock is introduced at t¼ 6 min followed by a hypertonic shock at t¼ 18 min. The blue and red curves are twowave forms of

the osmotic shock. (b–j) The response of the cell. Parameters are summarized in Table 1.
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but the result of subsequent changes in ion and water perme-
ation. More detailed discussion about how the cell volume is
affected by cortex disruption is given in the Supporting
Material.

To obtain more insight, we linearize Eq. 5 by assuming
that the cortical deformation is small, i.e., r=r0 � 1 is very
small. In this case,

K

2

�
r2

r20
� 1

�
¼ K

2

�
r

r0
þ 1

��
r

r0
� 1

�
zK

�
r

r0
� 1

�
:

Furthermore, we only consider the steady state, so that the
viscous term hð2=rÞðdr=dtÞ vanishes. The constitutive law
a b c

f g h

FIGURE 3 Imperfect adaptation to the hypotonic and hypertonic shocks when

the growth medium. The steady-state values of r and DP become slightly small

hypertonic shock. In the simulation, we use DPc ¼ 6� 104Pout (see estimatio

Biophysical Journal 105(3) 609–619
for the cortex then becomes s ¼ Kðr=r0 � 1Þ � sa. In this
case, a single static radius,

rs ¼
�
A1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 � A2

q �
; (7)

exists when A2
1 � A2R0, where A1 ¼ r0½g

ðDPcr0 � 2hKÞ þ 2bhKð2K þ 2sa þ scÞ�=ð4bhK2Þ and
A2 ¼ r20ðK þ saÞ½�gþ bðK þ sa þ scÞ�=ðbK2Þ. We see
that the steady radius is independent of Pout, so that the
cell can adapt to osmotic shocks. The steady radius is regu-
lated by DPc, sc, sa, r0, K, and the rate constants. For the
d e

i j

the critical osmotic pressure difference depends on the osmotic pressure in

er after the hypotonic shock, whereas they become slightly larger after the

n in the main text). Other parameters are summarized in Table 1.
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parameter range in living cells (Table 1), A2
1 � A2 is always

positive if sa ¼ 0. However, A2
1 � A2 could be negative if

the absolute value of sa is too large compared with K.
This regime is unphysical, since in this case the actin fila-
ment network is too soft to sustain the contractile force
from myosin so that the cell collapses, even when there is
significant hydrostatic pressure.
Volume and pressure regulation depend on
cortical mechanics, cell types and cell-cycle
phase

Indeed, any constitutive law including an elastic part would
yield similar adaptation behavior. For example, we can use
the neo-Hookean model (30) if we assume the cell cortex is
an incompressible hyperelastic material. In this case, s ¼
m(l2 � 1/l4) � sa, where m is a material constant and l ¼
r/r0 is the principal stretch along the radial direction. We
found that this constitutive law only changes the results
quantitatively. However, the cell response changes qualita-
tively if we assume the cortex is an active viscous fluid. In
this case, there is no reference radius, and the passive stress
only arises from cortical flow. In the limit where the cortical
stress is dominated by sa, we can assume that sp ¼ 0, and
that sa depends only on n. For example, we can use s ¼
C(n � n0), where C and n0 are two constants. This relation-
ship models the increase in myosin activity when there is an
increase in Ca2þ concentration. We find that this constitutive
law yields a steady-state radius, but it does not predict adap-
tation to osmotic shocks (Fig. 4). Therefore, volume and
pressure regulation depend on cortex mechanics and an
elastic component of the cortex may be required by cells
to adapt to osmotic shocks.

The active stress in the cortex, sa, is also regulated by
signaling networks. For example, the Rho family of
GTPases have been implicated in regulating myosin
contraction in eukaryotic cells in a calcium-independent
manner (31). Therefore, sa may be a time-dependent quan-
tity controlled by biochemical signaling networks. It is
interesting to consider a more sophisticated theory with an
active regulation of sa for cells outside of metaphase.
Loading-rate-dependent behavior of living cells
under external forces

We have shown that in some parameter range, the cell in our
model can adapt to osmotic shocks. For living cells, osmotic
shocks are not the only challenge from the environment,
they are also under the influence of forces from neighboring
cells. Therefore, it is also interesting and important to study
how cells regulate their volume and pressure under external
forces.

In 1977, Evans and Waugh (32) showed that when a pres-
sure is imposed on the red blood cell by micropipette suc-
tion, water molecules are filtered out of the cell so that the
osmotic pressure inside the cell increases to oppose the
efflux of water. When the net water flux is zero, the cell rea-
ches a steady state. However, the transport of ions controlled
by MS channels and ion pumps was not examined. In this
article, by considering the transport of both water and
ions, we intend to show how the volume and pressure of
the cell evolve under external forces. We consider a
dynamic indentation experiment where a spherical cell
initially in steady state is indented by an AFM cantilever
beam at a constant speed with force F (Fig. 5). The indenta-
tion depth is d and the radius of the contact area is a. It
should be noted that this is different from the experiment
setup used by Stewart et al. (11), since the position of the
cantilever beam is fixed in the experiment, whereas in this
calculation, we consider a dynamic indentation with a con-
stant indentation speed. We assume that there is no friction
between the AFM cantilever beam and cell surface and that
the cortical stress is uniform in the cortical layer. The
cortical stress still obeys the constitutive relation from Eq.
5 after dropping the viscous term.

Similar to Eqs. 1 and 4, the time evolution of the volume
and the total number of ions are given by

dV

dt
¼ Seff Jwater (8)

and

dn

dt
¼ Seff ðJin þ JoutÞ; (9)

where Seff is the effective surface area during indentation.
Here we assume that there is no ion or water transport across
the contact surface. Therefore, Seff ¼ S� 2pa2. Replacing
Seff by S in Eqs. 8 and 9 only changes the results quantita-
tively. We also assume that diffusion of ions and mechanical
equilibrium are much faster than the transport of water and
ions. Therefore, the ion concentration inside the cell is uni-
form and the cell is always in mechanical equilibrium. The
force balance in the cortical layer is given by

DPpr2 � F ¼ 2prhs sinq: (10)

If the contact angle between cell and beam is zero, the above
equation yields F ¼ DPpa2. The cell radius, rðqÞ, can be
solved from Eq. 10 as

rðqÞ ¼ a

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
sh

DPa

�2

sin2q

s
þ sh

DPa
sinq

#
:

Since dz=dr ¼ tanq, we can obtain dz=dq. Integrating z over
q, we obtain

z ¼ a
�
E1

�
q;�B2

	� E2

�
q;�B2

	
� aB cosqþ C; (11)
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FIGURE 4 The response of the cell to the hypotonic and hypertonic shocks when the constitutive law of the cortex, s ¼ Cðn� n0Þ, is used. In the calcu-

lation, C ¼ 5� 1014 Pa/mol and n0 ¼ 5� 10�13 mol are used. Other parameters are summarized in Table 1.
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where B ¼ sh=DPa is an unknown dimensionless variable,
which must be solved from another condition.

E1ðq;mÞ ¼
R q

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m sin2f

p
df and E2ðq;mÞ ¼

R q

0

ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m sin2f

p
Þ df are the incomplete elliptic integrals

of the first and second kind, respectively. The boundary
conditions are given by

z ¼ 0 ðat q ¼ 0Þ

z ¼ ð2r0 � dÞ
2

�
at q ¼ p

2

	 : (12)

From the boundary conditions, we have
ð2r0 � dÞ
2

¼ a
h
E1

�p
2
;�B2

�
� E2

�p
2
;�B2

�i
þ aB: (13)
FIGURE 5 Dynamic indentation of a, symmetric cell using an AFM

cantilever beam at a constant indentation speed. FðtÞ is the indentation

force, dðtÞ is the indentation depth, and aðtÞ is the contact area. The cell

shape is cylindrically symmetric and is described by functions

ðrðq; tÞ; zðq; tÞÞ.
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In terms of B and a, the surface area and volume of the cell
are

Seff ¼ 4pðaBÞ2
�
2

B
E1

�p
2
;�B2

�
� 1

B
E2

�p
2
;�B2

�
þ 2

�
:

(14)

and

V ¼ 2p

3
ðaBÞ3

�
1

B

�
1

B2
þ 8

�
E1

�p
2
;�B2

�

�1

B

�
1

B2
þ 4

�
E2

�p
2
;�B2

�
þ
�
3

B2
þ 8

��
:

(15)

By solving the coupled equations above (Eqs. 8, 9, and 13–
15), we can obtain the contact area, volume, indentation
force, and other variables. In the simulation, we assume
the indentation depth is d ¼ kt, where k is the indentation
speed. We find that the indentation force, F, depends
strongly on the indentation speed, k, especially when the
deformation is large (Fig. 6 c). The dependence comes
from the flow of water and ions (Fig. 6, j�l), which leads
to shrinkage of the cell (Fig. 6 d). If the indentation speed
is comparable to or smaller than the speed of water trans-
port, more MS channels are open as the cortical stress in-
creases with indentation. Both water and ions flow out of
the cell, so that the cell shrinks. In contrast, if the indenta-
tion is much faster than the flow of water and ions, water
and ion flows are negligible and the cell volume is nearly
conserved. Therefore, the indentation force becomes much
larger. We found that for small indentation speed
(k ¼ 0:01 mm=s and k ¼ 0:1 mm=s), the cell volume can
decrease significantly when the indentation depth, d, is large
(Fig. 6 d, red and green curves), whereas for the large
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FIGURE 6 Simulation results for the dynamic indentation of a cell using an AFM cantilever beam at a constant indentation speed. The cell is indented at

three speeds: k ¼ 1 mm=s, k ¼ 0:1 mm=s; and k ¼ 0:01 mm=s. Other parameters used are summarized in Table 1. Note that at fast indentation speeds,

1 mm=s, the cell essentially maintains a constant volume. However, when the deformation speed is slower, the volume change is significant.
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indentation speed k ¼ 1 mm=s; the cell volume is almost
conserved in our calculation (Fig. 6 d, blue curve). This is
consistent with the experimental observation that the cell
volume is nearly conserved for the indentation speed
k ¼ 3 mm=s used in the experiments (33). Our predictions
might also be useful to understand the cell monolayer
stretching experiment (34), where the cell monolayer
(~1 mm long) is stretched at strain rates between 0.5%/s
and 5%/s. In a study by Harris et al. (34), the loading rate
was between 5 and 50 mm/s, which is much higher than
the loading rate used in our calculation. For such high
loading rates, the cell volume should be nearly conserved,
as we predict in this model; cells should appear to be incom-
pressible (33,34). In contrast, the flow of water and the cor-
responding cell volume decrease have been observed when a
red blood cell is suctioned by a micropipette and suctioning
is maintained for a long period (32). Unfortunately, the pres-
sure used in experiments was quite small (roughly several
kPa) so that the volume change is small. Therefore, more
experimental measurements of the cell-volume change un-
der large forces and low indentation speeds are required to
further verify our predictions. We note, however, that in
most physiologically important settings, such as during em-
bryonic development, the strain rate is likely to be quite
small (35), since most tissues change size over many hours.
Therefore, the timescale of deformation is an important var-
iable. Also, it should be noted that the cell membrane ten-
sion can decrease not only through the openings of more
MS channels and the efflux of water and ions, but also by
formation of blebs. The coupling between the blebbing dy-
namics and cell-volume regulation would be another inter-
esting topic for further exploration.

We see that during external application of forces, living
cells can actively regulate their volume and pressure in reac-
tion to the external loading, and therefore cannot be treated
as a static balloonlike object. The measured cell stiffness
must be carefully interpreted, since it strongly depends on
the loading rate and experimental environment. A character-
istic of viscoelasticity is that the stress depends on the strain
rate. Therefore, this rate-dependent behavior due to volume
and pressure regulation can contribute to the observed
viscoelastic response of living cells (6,9). This rate-depen-
dent behavior due to the transport of water may be also
important for other situations where cells undergo large
deformation, e.g., cell division. Experiments have shown
that the efflux of water and ions leads to a dramatic volume
decrease as glioma cells progress through mitosis, so that at
division, all cells have a common volume (36). However,
Biophysical Journal 105(3) 609–619
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when the constriction speed of the contractile ring is fast
compared to water and ion transport, cells might not show
a detectable volume change (37). Also, measurements of
cell volume in these experiments (11,36,37) were not very
accurate, especially when cells were adhered to substrate.
Therefore, additional careful measurements should be per-
formed on spherical cells in suspension to monitor cell-vol-
ume changes when the constriction speed of the contractile
ring is slow.
CONCLUSION AND DISCUSSION

For eukaryotic animal cells, cell volume and cell shape are
variables that are controlled by a combination of the acto-
myosin cytoskeleton, MS channels, and ion pumps. The
action of these machines are coupled together to achieve
cell-volume control. In this article, we have developed the
basic framework for volume and pressure regulation in
mitotic cells or cells in suspension. Our results can explain
the experiment by Stewart et al (11) qualitatively. We
showed that active stress from cytoskeletal motors is not
sufficient to control cell volume. MS channels and active
ion and small-molecule pumps are also important. The
adaptation dynamics also depends strongly on cortical me-
chanics, which cells can actively regulate. Our model
currently describes the single-species case. For a real cell,
multiple solutes and multiple channels and pumps must be
considered. The overall dynamics is likely to be quite rich.

We also examined a model of dynamic cell indentation to
show that the indentation force depends strongly on the
indentation speed, especially when the deformation is large.
We showed that not only osmotic shocks but also mechani-
cal stress can influence water and ion transport. In addition,
adhesions to 2D substrates can be regarded as another kind
of force on cells. Therefore, our model also has conse-
quences for cell shape and volume change during cell adhe-
sion and spreading on 2D substrates of varying stiffness and
adhesion energy. However, the relevant data are still lacking,
and new experiments are therefore required to fully explore
this regime. Experiments also showed that osmotic shocks
can drive a pearling instability in axons (38), which suggest
additional shape instabilities connected to water and ion
permeation.

Finally, our model also has important implications for cell
motility, where cells actively change their shape by extend-
ing protrusions at the front and retracting at the rear. On 2D
substrates, these shape changes have been mainly attributed
to actin cytoskeletal dynamics. However, osmotic stress can
also greatly influence cell migration for many cell types (1).
It has also been demonstrated that a fluid flow in a tube can
be driven by an osmotic pressure difference generated by a
reaction diffusion system (39). Based on our simple model
of volume and pressure regulation developed in this article,
we propose that by controlling the influx and efflux of water
and ions, cells can achieve migration in confined spaces.
Biophysical Journal 105(3) 609–619
This migration mechanism might explain why metastatic
breast cancer cells migrate through narrow channels even
when actin polymerization, Rho/ROCK- or myosin-II-
dependent contractility, or integrin function are inhibited
(40). However, this proposed mechanism and the precise
roles of water, cytoskeleton, membrane proteins, and mem-
brane tension during motility in different kinds of cells still
require further elucidation.

A fundamental question raised by our model is, what is
the appropriate constitutive relation for the cell cortex?
The answer probably varies from cell to cell, and it also
may depend strongly on the phase of the cell cycle. Indeed
during typical osmotic-shock experiments, the cell can lyse,
suggesting that a soft and liquidlike cortex will balloon. In
addition, signaling networks with unexplored control algo-
rithms can regulate the active stress in the cell cortex. There-
fore, further explorations of this model in these contexts are
needed.
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Fig. S1 and S2 show the relevant quantities in the model during relaxation to steady state cell radius. Fig. S1
shows the relaxation to the pump and leak steady state, Fig. S2 shows the relaxation to the static steady state.

Fig. S3 models the experiments from Stewart et al, where drugs were used to disrupt ion pumps. We model this
change by decreasing the critical osmotic pressure for the ion pumps ∆Πc, and decreasing the threshold stress, σc, of
mechanosensitive channels. Results show that the cell radius decreases.

Fig. S4 also models the experiments from Stewart et al, where drugs were used to increase the permeability of
the cell membrane to ions. In our model, this can be described by either decreasing the threshold stress, σc, of
mechanosensitive channels, or increasing the ion permeation constant β. Both changes give similar results as shown
in Fig. S4, and the cell radius decreases.

Fig. S5 and S6 shows the effects of myosin contractility and the actin cortex. In the experiment of Ref. 11, the
cortex can be disrupted with blebbistatin to inhibit myosin II contraction, and latrunculin A to depolymerize actin
filaments (the case of Fig. 3f in Ref. 11). The volume is increased by about 7∼8%, which is equivalent to 2∼3%
increase of cell radius. The effect of blebbistatin is to decrease the amplitude of active stress σa. Latrunculin A
can affect cortex in two aspects: decrease the elastic modulus K and decrease the thickness of the cortex h. Our
simulation (Fig. S5) shows that if we decrease the elastic modulus K by 50% (from 6 KPa to 3 KPa) and keep h
as a constant (0.5 µm), the static cell radius increases 13% (from 9.06 µm to 10.24 µm). Our simulation (Fig. S6)
also shows that if we decrease the cortical thickness h by 50% (from 0.5 µm to 0.25 µm) and keep K as a constant
(6 KPa), the static cell radius only increases 2.8% (from 9.06 µm to 9.31 µm). This indicates that the static radius
is insensitive to h and our simulation can fit the experimental results. Thus we see that the sensitivities of the static
cell radius with respect to h and K are different. How latrunculin A affects the cortical thickness h and the elastic
modulus K is still unclear. Furthermore, h and K also depend on the dose of latrunculin A and the cortex may not
be depolymerized completely for low concentration of latrunculin A.

In our model, the static cell radius goes to infinity as K approaches zero since no structure can resist the hydrostatic
pressure difference in this case. In reality, however, the elastic modulus is unlikely to decrease too much since the
elastic component in our model may also come from other sources besides the cortex, such as the mitotic spindle,
intermediate filaments and the cell membrane. How much each of them contributes to the observed cell elasticity is
still unclear. If we only depolymerize one of them, K should not decrease very much. Even if the cortex, mitotic
spindle, intermediate filaments are all depolymerized simultaneously, the cell membrane can still contribute to K.
From experimental studies of osmotic swelling and lysis of lipid vesicles, the Young’s modulus of tout lipid membrane
is in the range of 107Pa, which is larger than the elastic modulus of the cortex [1, 2]. Even for these artificial lipid
membranes, the volume change after osmotic shocks is not very large (¡ 10%) [2]. However, it should also be noted
that the contribution of the cell membrane to K should not be very large due to the existence of excess membrane.

Finally, although we argued that any elastic constitutive law with a reference radius would yield similar adaptation
behavior, different elastic constitutive laws will yield different sensitivity of the cell radius with respect to K. For

example, in our simulation we use the constitutive law σ = K
2

(
S
S0

− 1
)
−σa (Eq. 5 in our main text). While in order

to obtain more insights, we linearized this equation by assuming the cortical deformation is small. So the constitutive
law for the cortex becomes σ = K(r/r0 − 1) − σa. We found this linear constitutive law is more sensitive than

the constitutive law σ = K
2

(
S
S0

− 1
)
− σa with respect to K. In our paper, we explored several constitutive laws.

However, as we have discussed in the main text, the constitutive law of the cortex still requires more experimental
and theoretical investigation.

[1] F. R. Hallett, J. Marsh, B. G. Nickel, J. M. Wood, Biophys. J. 64:435-42(1993).
[2] W. Li, T. S. Aurora, T. H. Haines, H. Z. Cummins. Biochemistry. 25:8220-9 (1986).
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FIG. S1: For parameters that satisfy Eq. 10, cells pump and leak (Fig. 1(d)). At the steady state, the influx and efflux of ions
are equal and opposite, but not vanishing. Parameters used are summarized in the Table 1.
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FIG. S2: For parameters that do not satisfy Eq. 10, cells can reach a static equilibrium (Fig. 1(d)). At the steady state, the
influx and efflux of ions are always zero. In the calculation, ∆Πc = 50Pa and other parameters used are summarized in the
Table 1.
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FIG. S3: Modeling the experiment of Stewart et al., where Na+/H+ ion pumps were blocked using a drug. (a) We model this
by decreasing the value of ∆Πc at t = 6 min. (b)-(j) The response of the cell.
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FIG. S4: Modeling the experiment of Stewart et al., where they used a drug to render the cell membrane permeable to ions. (a)
We model this by decreasing the threshold stress of MS channels, σc, at t=6 min. (b)-(j) The response of the cell.
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FIG. S5: (a) At t=6 min, lowering the amplitude of σa to simulate the inhibition of myosin II contraction, and decreasing the
elastic modulus of the cortex K by 50% to simulate the depolymerizing actin filament. (b)-(j) The response of the cell. The
static cell radius increases 13%.
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FIG. S6: (a) At t=6 min, lowering the amplitude of σa to simulate the inhibition of myosin II contraction, and decreasing the
cortex thickness h by 50% to simulate the depolymerizing actin filament. (b)-(j) The response of the cell. The static cell radius
only increases 2.8%.
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